Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 24(7): 1088-1098, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35725768

RESUMO

A long-established strategy for transcription regulation is the tethering of transcription factors to cellular membranes. By contrast, the principal effectors of Hedgehog signalling, the GLI transcription factors, are regulated by microtubules in the primary cilium and the cytoplasm. How GLI is tethered to microtubules remains unclear. Here, we uncover DNA mimicry by the ciliary kinesin KIF7 as a mechanism for the recruitment of GLI to microtubules, wherein the coiled-coil dimerization domain of KIF7, characterized by its striking shape, size and charge similarity to DNA, forms a complex with the DNA-binding zinc fingers in GLI, thus revealing a mode of tethering a DNA-binding protein to the cytoskeleton. GLI increases KIF7 microtubule affinity and consequently modulates the localization of both proteins to microtubules and the cilium tip. Thus, the kinesin-microtubule system is not a passive GLI tether but a regulatable platform tuned by the kinesin-transcription factor interaction. We retooled this coiled-coil-based GLI-KIF7 interaction to inhibit the nuclear and cilium localization of GLI. This strategy can potentially be exploited to downregulate erroneously activated GLI in human cancers.


Assuntos
Cinesinas , Fatores de Transcrição , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Cinesinas/genética , Microtúbulos/metabolismo , Mimetismo Molecular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco/genética
2.
Elife ; 92020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31958056

RESUMO

Kinesin-5 motors organize mitotic spindles by sliding apart microtubules. They are homotetramers with dimeric motor and tail domains at both ends of a bipolar minifilament. Here, we describe a regulatory mechanism involving direct binding between tail and motor domains and its fundamental role in microtubule sliding. Kinesin-5 tails decrease microtubule-stimulated ATP-hydrolysis by specifically engaging motor domains in the nucleotide-free or ADP states. Cryo-EM reveals that tail binding stabilizes an open motor domain ATP-active site. Full-length motors undergo slow motility and cluster together along microtubules, while tail-deleted motors exhibit rapid motility without clustering. The tail is critical for motors to zipper together two microtubules by generating substantial sliding forces. The tail is essential for mitotic spindle localization, which becomes severely reduced in tail-deleted motors. Our studies suggest a revised microtubule-sliding model, in which kinesin-5 tails stabilize motor domains in the microtubule-bound state by slowing ATP-binding, resulting in high-force production at both homotetramer ends.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Humanos , Hidrólise , Cinesinas/química , Cinesinas/ultraestrutura , Cinética , Ligação Proteica , Domínios Proteicos , Fuso Acromático/metabolismo
3.
Dev Cell ; 49(5): 711-730.e8, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31031197

RESUMO

The correct localization of Hedgehog effectors to the tip of primary cilia is critical for proper signal transduction. The conserved non-motile kinesin Kif7 defines a "cilium-tip compartment" by localizing to the distal ends of axonemal microtubules. How Kif7 recognizes microtubule ends remains unknown. We find that Kif7 preferentially binds GTP-tubulin at microtubule ends over GDP-tubulin in the mature microtubule lattice, and ATP hydrolysis by Kif7 enhances this discrimination. Cryo-electron microscopy (cryo-EM) structures suggest that a rotated microtubule footprint and conformational changes in the ATP-binding pocket underlie Kif7's atypical microtubule-binding properties. Finally, Kif7 not only recognizes but also stabilizes a GTP-form of tubulin to promote its own microtubule-end localization. Thus, unlike the characteristic microtubule-regulated ATPase activity of kinesins, Kif7 modulates the tubulin mechanochemical cycle. We propose that the ubiquitous kinesin fold has been repurposed in Kif7 to facilitate organization of a spatially restricted platform for localization of Hedgehog effectors at the cilium tip.


Assuntos
Cílios/fisiologia , Guanosina Trifosfato/metabolismo , Cinesinas/metabolismo , Mecanotransdução Celular , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Humanos , Cinesinas/química , Cinesinas/genética , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Transdução de Sinais , Tubulina (Proteína)/genética
4.
Curr Biol ; 27(23): 3666-3675.e6, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29153323

RESUMO

The macromolecular kinetochore functions to generate interactions between chromosomal DNA and spindle microtubules [1]. To facilitate chromosome movement and segregation, kinetochores must maintain associations with both growing and shrinking microtubule ends. It is critical to define the proteins and their properties that allow kinetochores to associate with dynamic microtubules. The kinetochore-localized human Ska1 complex binds to microtubules and tracks with depolymerizing microtubule ends [2]. We now demonstrate that the Ska1 complex also autonomously tracks with growing microtubule ends in vitro, a key property that would allow this complex to act at kinetochores to mediate persistent associations with dynamic microtubules. To define the basis for Ska1 complex interactions with dynamic microtubules, we investigated the tubulin-binding properties of the Ska1 microtubule binding domain. In addition to binding to the microtubule lattice and dolastatin-induced protofilament-like structures, we demonstrate that the Ska1 microtubule binding domain can associate with soluble tubulin heterodimers and promote assembly of oligomeric ring-like tubulin structures. We generated mutations on distinct surfaces of the Ska1 microtubule binding domain that disrupt binding to soluble tubulin but do not prevent microtubule binding. These mutants display compromised microtubule tracking activity in vitro and result in defective chromosome alignment and mitotic progression in cells using a CRISPR/Cas9-based replacement assay. Our work supports a model in which multiple surfaces of Ska1 interact with diverse tubulin substrates to associate with dynamic microtubule polymers and facilitate optimal chromosome segregation.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Cromossômicas não Histona/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Tubulina (Proteína)/metabolismo
5.
Mol Biol Cell ; 27(8): 1197-203, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26941333

RESUMO

During cell division, kinetochores must remain tethered to the plus ends of dynamic microtubule polymers. However, the molecular basis for robust kinetochore-microtubule interactions remains poorly understood. The conserved four-subunit Ndc80 complex plays an essential and direct role in generating dynamic kinetochore-microtubule attachments. Here we compare the binding of theCaenorhabditis elegansand human Ndc80 complexes to microtubules at high resolution using cryo-electron microscopy reconstructions. Despite the conserved roles of the Ndc80 complex in diverse organisms, we find that the attachment mode of these complexes for microtubules is distinct. The human Ndc80 complex binds every tubulin monomer along the microtubule protofilament, whereas theC. elegansNdc80 complex binds more tightly to ß-tubulin. In addition, theC. elegansNdc80 complex tilts more toward the adjacent protofilament. These structural differences in the Ndc80 complex between different species may play significant roles in the nature of kinetochore-microtubule interactions.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Microscopia Crioeletrônica , Proteínas do Citoesqueleto , Cinetocoros/metabolismo , Modelos Moleculares , Conformação Proteica , Tubulina (Proteína)/metabolismo
6.
Cell ; 161(5): 1112-1123, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25959773

RESUMO

Glutamylation, the most prevalent tubulin posttranslational modification, marks stable microtubules and regulates recruitment and activity of microtubule- interacting proteins. Nine enzymes of the tubulin tyrosine ligase-like (TTLL) family catalyze glutamylation. TTLL7, the most abundant neuronal glutamylase, adds glutamates preferentially to the ß-tubulin tail. Coupled with ensemble and single-molecule biochemistry, our hybrid X-ray and cryo-electron microscopy structure of TTLL7 bound to the microtubule delineates a tripartite microtubule recognition strategy. The enzyme uses its core to engage the disordered anionic tails of α- and ß-tubulin, and a flexible cationic domain to bind the microtubule and position itself for ß-tail modification. Furthermore, we demonstrate that all single-chain TTLLs with known glutamylase activity utilize a cationic microtubule-binding domain analogous to that of TTLL7. Therefore, our work reveals the combined use of folded and intrinsically disordered substrate recognition elements as the molecular basis for specificity among the enzymes primarily responsible for chemically diversifying cellular microtubules.


Assuntos
Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Sintases/genética , Alinhamento de Sequência
7.
Nat Cell Biol ; 16(9): 852-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25173975

RESUMO

Proper microtubule nucleation during cell division requires augmin, a microtubule-associated hetero-octameric protein complex. In current models, augmin recruits γ-tubulin, through the carboxyl terminus of its hDgt6 subunit to nucleate microtubules within spindles. However, augmin's biochemical complexity has restricted analysis of its structural organization and function. Here, we reconstitute human augmin and show that it is a Y-shaped complex that can adopt multiple conformations. Further, we find that a dimeric sub-complex retains in vitro microtubule-binding properties of octameric complexes, but not proper metaphase spindle localization. Addition of octameric augmin complexes to Xenopus egg extracts promotes microtubule aster formation, an activity enhanced by Ran-GTP. This activity requires microtubule binding, but not the characterized hDgt6 γ-tubulin-recruitment domain. Tetrameric sub-complexes induce asters, but activity and microtubule bundling within asters are reduced compared with octameric complexes. Together, our findings shed light on augmin's structural organization and microtubule-binding properties, and define subunits required for its function in organizing microtubule-based structures.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Animais , Sistema Livre de Células , Escherichia coli , Humanos , Metáfase , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Xenopus laevis
8.
Cell ; 147(1): 209-22, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21962517

RESUMO

The GTPase dynamin catalyzes membrane fission by forming a collar around the necks of clathrin-coated pits, but the specific structural interactions and conformational changes that drive this process remain a mystery. We present the GMPPCP-bound structures of the truncated human dynamin 1 helical polymer at 12.2 Å and a fusion protein, GG, linking human dynamin 1's catalytic G domain to its GTPase effector domain (GED) at 2.2 Å. The structures reveal the position and connectivity of dynamin fragments in the assembled structure, showing that G domain dimers only form between tetramers in sequential rungs of the dynamin helix. Using chemical crosslinking, we demonstrate that dynamin tetramers are made of two dimers, in which the G domain of one molecule interacts in trans with the GED of another. Structural comparison of GG(GMPPCP) to the GG transition-state complex identifies a hydrolysis-dependent powerstroke that may play a role in membrane-remodeling events necessary for fission.


Assuntos
Dinamina I/química , Dinamina I/metabolismo , Cristalografia por Raios X , Humanos , Hidrólise , Modelos Moleculares , Estrutura Terciária de Proteína
9.
Methods ; 55(4): 350-62, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21964395

RESUMO

Electron crystallography plays a key role in the structural biology of integral membrane proteins (IMPs) by offering one of the most direct means of providing insight into the functional state of these molecular machines in their lipid-associated forms, and also has the potential to facilitate examination of physiologically relevant transitional states and complexes. Helical or tubular crystals, which are the natural product of proteins crystallizing on the surface of a cylindrical vesicle, offer some unique advantages, such as three-dimensional (3D) information from a single view, compared to other crystalline forms. While a number of software packages are available for processing images of helical crystals to produce 3D electron density maps, widespread exploitation of helical image reconstruction is limited by a lack of standardized approaches and the initial effort and specialized expertise required. Our goal is to develop an integrated pipeline to enable structure determination by transmission electron microscopy (TEM) of IMPs in the form of tubular crystals. We describe here the integration of standard Fourier-Bessel helical analysis techniques into Appion, an integrated, database-driven pipeline.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Microscopia Eletrônica de Transmissão/métodos , Software , Cristalografia , Interpretação Estatística de Dados , Humanos , Proteínas de Membrana/química , Modelos Moleculares , Conformação Proteica
10.
Science ; 330(6004): 673-7, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21030658

RESUMO

Ribosomes are self-assembling macromolecular machines that translate DNA into proteins, and an understanding of ribosome biogenesis is central to cellular physiology. Previous studies on the Escherichia coli 30S subunit suggest that ribosome assembly occurs via multiple parallel pathways rather than through a single rate-limiting step, but little mechanistic information is known about this process. Discovery single-particle profiling (DSP), an application of time-resolved electron microscopy, was used to obtain more than 1 million snapshots of assembling 30S subunits, identify and visualize the structures of 14 assembly intermediates, and monitor the population flux of these intermediates over time. DSP results were integrated with mass spectrometry data to construct the first ribosome-assembly mechanism that incorporates binding dependencies, rate constants, and structural characterization of populated intermediates.


Assuntos
Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Processamento de Imagem Assistida por Computador , Cinética , Espectrometria de Massas , Microscopia Eletrônica/métodos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , RNA Bacteriano/química , RNA Ribossômico/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas Menores de Bactérias/química
11.
Cell ; 142(3): 433-43, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20691902

RESUMO

Formation of microtubule architectures, required for cell shape maintenance in yeast, directional cell expansion in plants and cytokinesis in eukaryotes, depends on antiparallel microtubule crosslinking by the conserved MAP65 protein family. Here, we combine structural and single molecule fluorescence methods to examine how PRC1, the human MAP65, crosslinks antiparallel microtubules. We find that PRC1's microtubule binding is mediated by a structured domain with a spectrin-fold and an unstructured Lys/Arg-rich domain. These two domains, at each end of a homodimer, are connected by a linkage that is flexible on single microtubules, but forms well-defined crossbridges between antiparallel filaments. Further, we show that PRC1 crosslinks are compliant and do not substantially resist filament sliding by motor proteins in vitro. Together, our data show how MAP65s, by combining structural flexibility and rigidity, tune microtubule associations to establish crosslinks that selectively "mark" antiparallel overlap in dynamic cytoskeletal networks.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Proteínas de Ciclo Celular/química , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Espectrina/metabolismo
12.
J Cell Biol ; 185(1): 51-7, 2009 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-19332892

RESUMO

Kinesin motor proteins use adenosine triphosphate hydrolysis to do work on microtubules (MTs). Most kinesins walk along the MT, but class 13 kinesins instead uniquely recognize MT ends and depolymerize MT protofilaments. We have used electron microscopy (EM) to understand the molecular interactions by which kinesin 13 performs these tasks. Although a construct of only the motor domain of kinesin 13 binds to every heterodimer of a tubulin ring, a construct containing the neck and the motor domain occupies alternate binding sites. Likewise, EM maps of the dimeric full-length (FL) protein exhibit alternate site binding but reveal density for only one of two motor heads. These results indicate that the second head of dimeric kinesin 13 does not have access to adjacent binding sites on the curved protofilament and suggest that the neck alone is sufficient to obstruct access. Additionally, the FL construct promotes increased stacking of rings compared with other constructs. Together, these data suggest a model for kinesin 13 depolymerization in which increased efficiency is achieved by binding of one kinesin 13 molecule to adjacent protofilaments.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Animais , Sítios de Ligação , Cricetinae , Cricetulus , Humanos , Cinesinas/química , Microtúbulos/ultraestrutura , Plasmodium falciparum , Estrutura Terciária de Proteína , Tubulina (Proteína)/metabolismo
13.
J Struct Biol ; 165(3): 169-75, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19114108

RESUMO

Bacterial ATP binding cassette (ABC) exporters fulfill a wide variety of transmembrane transport roles and are homologous to the human multidrug resistance P-glycoprotein. Recent X-ray structures of the exporters MsbA and Sav1866 have begun to describe the conformational changes that accompany the ABC transport cycle. Here we present cryo-electron microscopy structures of MsbA reconstituted into a lipid bilayer. Using ATPase inhibitors, we captured three nucleotide transition states of the transporter that were subsequently reconstituted into helical arrays. The enzyme-substrate complex (trapped by ADP-aluminum fluoride or AMPPNP) crystallized in a different helical lattice than the enzyme-product complex (trapped by ADP-vanadate). Approximately 20A resolution maps were calculated for each state and revealed MsbA to be a dimer with a large channel between the membrane spanning domains, similar to the outward facing crystal structures of MsbA and Sav1866. This suggests that while there are likely structural differences between the nucleotide transition states, membrane embedded MsbA remains in an outward facing conformation while nucleotide is bound.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Nucleotídeos de Adenina/química , Proteínas de Bactérias/química , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Adenilil Imidodifosfato/química , Microscopia Crioeletrônica , Cristalização , Cristalografia , Processamento de Imagem Assistida por Computador , Lipossomos/química , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química , Salmonella typhimurium/química , Salmonella typhimurium/genética , Vanadatos/química , Vibrio cholerae/química , Vibrio cholerae/genética
14.
Science ; 322(5908): 1691-5, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19074350

RESUMO

Dynein motors move various cargos along microtubules within the cytoplasm and power the beating of cilia and flagella. An unusual feature of dynein is that its microtubule-binding domain (MTBD) is separated from its ring-shaped AAA+ adenosine triphosphatase (ATPase) domain by a 15-nanometer coiled-coil stalk. We report the crystal structure of the mouse cytoplasmic dynein MTBD and a portion of the coiled coil, which supports a mechanism by which the ATPase domain and MTBD may communicate through a shift in the heptad registry of the coiled coil. Surprisingly, functional data suggest that the MTBD, and not the ATPase domain, is the main determinant of the direction of dynein motility.


Assuntos
Dineínas/química , Dineínas/metabolismo , Microtúbulos/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Dimerização , Interações Hidrofóbicas e Hidrofílicas , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia Eletrônica , Microtúbulos/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Movimento , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
15.
J Cell Biol ; 182(6): 1055-61, 2008 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-18794333

RESUMO

The four-subunit Ndc80 complex, comprised of Ndc80/Nuf2 and Spc24/Spc25 dimers, directly connects kinetochores to spindle microtubules. The complex is anchored to the kinetochore at the Spc24/25 end, and the Ndc80/Nuf2 dimer projects outward to bind to microtubules. Here, we use cryoelectron microscopy and helical image analysis to visualize the interaction of the Ndc80/Nuf2 dimer with microtubules. Our results, when combined with crystallography data, suggest that the globular domain of the Ndc80 subunit binds strongly at the interface between tubulin dimers and weakly at the adjacent intradimer interface along the protofilament axis. Such a binding mode, in which the Ndc80 complex interacts with sequential alpha/beta-tubulin heterodimers, may be important for stabilizing kinetochore-bound microtubules. Additionally, we define the binding of the Ndc80 complex relative to microtubule polarity, which reveals that the microtubule interaction surface is at a considerable distance from the opposite kinetochore-anchored end; this binding geometry may facilitate polymerization and depolymerization at kinetochore-attached microtubule ends.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas do Citoesqueleto , Dimerização , Humanos , Cinetocoros/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
16.
J Mol Biol ; 381(3): 519-28, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18588896

RESUMO

The structure and function of myosin crossbridges in asynchronous insect flight muscle (IFM) have been elucidated in situ using multiple approaches. These include generating "atomic" models of myosin in multiple contractile states by rebuilding the crystal structure of chicken subfragment 1 (S1) to fit IFM crossbridges in lower-resolution electron microscopy tomograms and by "mapping" the functional effects of genetically substituted, isoform-specific domains, including the converter domain, in chimeric IFM myosin to sequences in the crystal structure of chicken S1. We prepared helical reconstructions (approximately 25 A resolution) to compare the structural characteristics of nucleotide-free myosin0 S1 bound to actin (acto-S1) isolated from chicken skeletal muscle (CSk) and the flight muscles of Lethocerus (Leth) wild-type Drosophila (wt Dros) and a Drosophila chimera (IFI-EC) wherein the converter domain of the indirect flight muscle myosin isoform has been replaced by the embryonic skeletal myosin converter domain. Superimposition of the maps of the frozen-hydrated acto-S1 complexes shows that differences between CSk and IFM S1 are limited to the azimuthal curvature of the lever arm: the regulatory light-chain (RLC) region of chicken skeletal S1 bends clockwise (as seen from the pointed end of actin) while those of IFM S1 project in a straight radial direction. All the IFM S1s are essentially identical other than some variation in the azimuthal spread of density in the RLC region. This spread is most pronounced in the IFI-EC S1, consistent with proposals that the embryonic converter domain increases the compliance of the IFM lever arm affecting the function of the myosin motor. These are the first unconstrained models of IFM S1 bound to actin and the first direct comparison of the vertebrate and invertebrate skeletal myosin II classes, the latter for which, data on the structure of discrete acto-S1 complexes, are not readily available.


Assuntos
Actinas/química , Proteínas Motores Moleculares/química , Músculo Esquelético/química , Subfragmentos de Miosina/química , Animais , Galinhas , Drosophila , Voo Animal , Heterópteros , Modelos Biológicos , Fibras Musculares Esqueléticas/química , Ligação Proteica , Isoformas de Proteínas/química
17.
J Mol Biol ; 377(3): 647-54, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18294653

RESUMO

An expanding collection of proteins localises to microtubule ends to regulate cytoskeletal dynamics and architecture by unknown molecular mechanisms. Electron microscopy is invaluable for studying microtubule structure, but because microtubule ends are heterogeneous, their structures are difficult to determine. We therefore investigated whether tubulin oligomers induced by the drug dolastatin could mimic microtubule ends. The microtubule end-dependent ATPase of kinesin-13 motors is coupled to microtubule depolymerisation. Significantly, kinesin-13 motor ATPase activity is stimulated by dolastatin-tubulin oligomers, suggesting, first, that these oligomers share properties with microtubule ends and, second, that the physical presence of an end is less important than terminal tubulin flexibility for microtubule end recognition by the kinesin-13 motor. Using electron microscopy, we visualised the kinesin-13 motor-dolastatin-tubulin oligomer interaction in nucleotide states mimicking steps in the ATPase cycle. This enabled us to detect conformational changes that the motor undergoes during depolymerisation. Our data suggest that such tubulin oligomers can be used to examine other microtubule end-binding proteins.


Assuntos
Cinesinas/química , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Plasmodium/metabolismo , Proteínas de Protozoários/química , Nucleotídeos de Adenina/química , Adenosina Trifosfatases/química , Animais , Depsipeptídeos/química , Modelos Moleculares , Conformação Proteica , Tubulina (Proteína)/química
18.
Nature ; 449(7158): 87-91, 2007 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-17805295

RESUMO

Hair cells of the inner ear are mechanosensors that transduce mechanical forces arising from sound waves and head movement into electrochemical signals to provide our sense of hearing and balance. Each hair cell contains at the apical surface a bundle of stereocilia. Mechanoelectrical transduction takes place close to the tips of stereocilia in proximity to extracellular tip-link filaments that connect the stereocilia and are thought to gate the mechanoelectrical transduction channel. Recent reports on the composition, properties and function of tip links are conflicting. Here we demonstrate that two cadherins that are linked to inherited forms of deafness in humans interact to form tip links. Immunohistochemical studies using rodent hair cells show that cadherin 23 (CDH23) and protocadherin 15 (PCDH15) localize to the upper and lower part of tip links, respectively. The amino termini of the two cadherins co-localize on tip-link filaments. Biochemical experiments show that CDH23 homodimers interact in trans with PCDH15 homodimers to form a filament with structural similarity to tip links. Ions that affect tip-link integrity and a mutation in PCDH15 that causes a recessive form of deafness disrupt interactions between CDH23 and PCDH15. Our studies define the molecular composition of tip links and provide a conceptual base for exploring the mechanisms of sensory impairment associated with mutations in CDH23 and PCDH15.


Assuntos
Caderinas/metabolismo , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Precursores de Proteínas/metabolismo , Animais , Caderinas/deficiência , Caderinas/genética , Linhagem Celular , Surdez/genética , Dimerização , Genes Recessivos/genética , Cobaias , Humanos , Camundongos , Mutação/genética , Ligação Proteica , Precursores de Proteínas/genética
19.
J Struct Biol ; 159(3): 335-46, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17524663

RESUMO

Visualization by electron microscopy has provided many insights into the composition, quaternary structure, and mechanism of macromolecular assemblies. By preserving samples in stain or vitreous ice it is possible to image them as discrete particles, and from these images generate three-dimensional structures. This 'single-particle' approach suffers from two major shortcomings; it requires an initial model to reconstitute 2D data into a 3D volume, and it often fails when faced with conformational variability. Random conical tilt (RCT) and orthogonal tilt (OTR) are methods developed to overcome these problems, but the data collection required, particularly for vitreous ice specimens, is difficult and tedious. In this paper, we present an automated approach to RCT/OTR data collection that removes the burden of manual collection and offers higher quality and throughput than is otherwise possible. We show example datasets collected under stain and cryo conditions and provide statistics related to the efficiency and robustness of the process. Furthermore, we describe the new algorithms that make this method possible, which include new calibrations, improved targeting and feature-based tracking.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Software
20.
J Struct Biol ; 158(3): 445-54, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17349803

RESUMO

Bovine V-ATPase from brain clathrin-coated vesicles was investigated by cryo-electron microscopy and single particle analysis. Our studies revealed great flexibility of the central linker region connecting V1 and V0. As a consequence, the two sub-complexes were processed separately and the resulting volumes were merged computationally. We present the first three-dimensional (3D) map of a V-ATPase obtained from cryo-electron micrographs. The overall resolution was estimated 34A by Fourier shell correlation (0.5 cutoff). Our 3D reconstruction shows a large peripheral stalk and a smaller, isolated peripheral density, suggesting a second, less well-resolved peripheral connection. The 3D map reveals new features of the large peripheral stator and of the collar-like density attached to the membrane domain. Our analyses of the membrane domain indicate the presence of six proteolipid subunits. In addition, we could localize the V0 subunit a flanking the large peripheral stalk.


Assuntos
Encéfalo/enzimologia , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Animais , Domínio Catalítico , Bovinos , Microscopia Crioeletrônica , Holoenzimas/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...